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Abstract. We generalize a recently introduced traffic model, where the statistical weights are
associated with whole trajectories, to the case of two-way flow. An interaction between the two
lanes is included which describes a slowing down when two cars meet. This leads to two coupled
five-vertex models. It is shown that this problem can be solved by reducing it to two one-lane
problems with modified parameters. In contrast to stochastic models, jamming appears only for
very strong interaction between the lanes.

1. Introduction

The non-equilibrium properties of one-dimensional lattice gases have been studied intensively
over the last years [1]. With lattice gases, one can model not only physical situations such
as transport in solid ionic conductors [2] or growth processes [3], but also the traffic flow
on roads [4]. Moreover, they can be used to study general features of phase transitions in
non-equilibrium systems [5–8]. For the traffic problem, the simplest model is the completely
asymmetric exclusion process (ASEP), where classical hard-core particles hop stochastically,
with unit rate, in one direction only [9]. On a ring, one then finds a steady state of product
form where all configurations are equally likely. In terms of the density ρ of particles, the flux
is then given by j = ρ(1 − ρ) and already shows the qualitative features also found in more
sophisticated models, i.e. it vanishes for ρ = 0, 1 and has a maximum in between.

An essentially new description of traffic flow was proposed recently by Brankov et al [10].
In this work, non-intersecting domain-wall lines on a square lattice were interpreted as space–
time trajectories of cars. The weight of a trajectory is then obtained from the fugacities for
horizontal and vertical moves. The single step, however, has no stochastic interpretation. The
problem can be formulated in terms of a five-vertex model which generates these lines and
which is exactly solvable since it satisfies the so-called free-fermion condition. The result
for the flux j is physically reasonable and very similar to that for a variant of the (stochastic)
Nagel–Schreckenberg model [11]. In this paper, we show that one can generalize this model to
the case of two-way traffic where cars on different lanes interact with each other. The specific
effect which we are treating is a tendency to slow down when another car is approaching. In the
two-dimensional formulation, this is described by a modification of the fugacities whenever
trajectories of oppositely moving cars cross. One then is led to consider two five-vertex
models with a certain coupling between them. It turns out, however, that this coupling only
renormalizes the parameters in each subsystem, so the problem remains solvable as before.
One finds that, in this model, the effect of an obstacle, i.e. of a car in the other lane, is relatively
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Figure 1. Vertex configurations for right-moving cars: Boltzmann weights are 0, 1, x1, t1,
√
x1t1

and
√
x1t1 respectively.

weak. While in stochastic models already a certain finite reduction of the hopping rate at one
position usually leads to a traffic-jam phenomenon with a region of high density appearing in
front of the bottleneck [12–17], this happens here only if the fugacity is reduced to zero for
a large system. As will be explained, this feature is related to the different weighting of the
trajectories in both cases.

In the following, we first describe the model in section 2 and then explain its solution in
section 3. Finally, in section 4, we discuss the results and add some further remarks.

2. Model

We first recall the formulation of the original one-way traffic model in [10]. For a square lattice
with periodic boundary conditions, the horizontal direction is interpreted as space, the vertical
one as time (increasing downwards). Non-intersecting lines running towards the lower right
are then drawn on the lattice and viewed as trajectories of right-moving cars. They do not end,
so that the number N1 of cars is conserved. A horizontal step, representing a move, is given
fugacity (weight) x1, and vertical step fugacity t1. Statistical averages are then obtained from
the partition function

Z(N1, x1, t1) =
∑
C

x1
Nx(C)t1

Nt (C) (1)

where Nx(C) and Nt(C) are the total numbers of steps in the two directions for a certain
configuration C of trajectories. These trajectories are generated with their correct weights if
at each lattice site the vertices shown in figure 1 are possible.

Since crossings (vertex 1) are forbidden, one is effectively dealing with a five-vertex
model which can be solved exactly via the Bethe ansatz, even for more general weights w5,
w6 [18, 19]. In the present case, free-fermion techniques can be used to obtain the partition
function [20].

For the two-way traffic model, we introduce a second lattice where trajectories run towards
the lower left, corresponding to the cars in the other lane. The fugacities are taken to be x2, t2
and the trajectories are now generated by the vertices in figure 2.

To formulate the interaction between cars in the two lanes, the indices at the vertices are
specified in the following way:

lattice 1 lattice 2
α α′ γ ′ γ

β

β ′

δ

δ′
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Figure 2. Vertex configurations for left-moving cars: Boltzmann weights are 0, 1, x2, t2,
√
x2t2

and
√
x2t2 respectively.

Table 1. Interaction ε between two adjacent vertices in the two layers.

Vertex 3 4 5 6

3 0 −h −h/2 −h/2
4 −h 0 −h/2 −h/2
5 −h/2 −h/2 −h/2 −h/2
6 −h/2 −h/2 −h/2 −h/2

The variables α, β, . . . take the value one if a car is present (thick line) and zero otherwise.
For all vertices, the so-called ice rule

α + β = α′ + β ′ and γ + δ = γ ′ + δ′ (2)

holds, which ensures the conservation law for the number of cars, separately for both lanes.
We now imagine that the two lattices are placed above each other and attribute an additional

Boltzmann weight

v = exp(−ε) = exp

(−h

2
(αδ + α′δ′ + βγ ′ + β ′γ )

)
(3)

to adjacent vertices in the two layers. Then each crossing of two trajectories will be weighted
with the factor

0 < r = exp(−h) < 1. (4)

To see this, one first notes that ε = 0, v = 1 if one of the vertices is of type 2, i.e. if there is
no car present. The values of ε in the remaining cases are given in table 1. It then follows
that simple crossings, which involve a pair of vertices of type 3 and 4, lead directly to a factor
r (see table 1). If trajectories meet and run (anti)parallel before they separate again, each of
the two branch points contributes a factor

√
r . Some examples illustrating such crossings are

shown in figure 3.
One should mention that the choice (3) for the interaction is not unique. The more general

form for ε

−ε = A(αδ′ + βγ ) + B(αδ + β ′γ ) + C(α′δ′ + βγ ′) + D(α′δ + β ′γ ′) (5)

with A + B + C + D = h still leads to the same factor r = exp(−h). The individual terms
listed in table 1, however, become more complicated.

In the model defined in this way, one still has the freedom to choose the particle numbers
and the fugacities. Thus, by setting x2 = 0, one can immobilize the cars in the second lane
and treat, in particular, the case of one fixed obstacle, which is of special interest.
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Figure 3. Trajectories of one left-moving and three right-moving particles with different types of
crossing.

3. Solution

We now show that the two-lane model can be solved by reducing it to the one-lane problem.
The proof follows [21], where a similar problem was treated. It is based on the ice rule (2)
which relates horizontal and vertical bond variables. Suppose that the lattices have N columns
andM rows, and let αn,m(γn,m) and βn,m(δn,m) be the variables to the right and below the vertex
(n,m), respectively, in the two layers. Then the total interaction is

E = −h

2

M∑
m=1

N∑
n=1

(αn−1,mδn,m−1 + αn,mδn,m + βn,m−1γn−1,m + βn,mγn,m).

With the help of (2), this can be rewritten as

E = −h

2

( M∑
m=1

(α0,m + αN,m)N2 +
M∑

m=1

(γ0,m + γN,m)N1 + U(0) − U(M)

)
. (6)

where

U(m) =
N−1∑
n=1

n∑
k=1

(βk,mδn+1,m − βn+1,mδk,m) (7)

contains only vertical bonds, while the other two terms in (6) contain only horizontal bonds.
Due to the periodic boundary conditions, the differenceU(0)−U(M) vanishes and one obtains

E = −hN2

M∑
m=1

αN,m − hN1

M∑
m=1

γN,m. (8)
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This can be compared with the effect of a rescaling x1 → x1e−η1 , x2 → x2e−η2 which leads to
an extra factor exp(−η1(α +α′)/2 −η2(γ +γ ′)/2) for each pair of adjacent vertices. Summed
over all sites, this gives

E′ = −
M∑

m=1

N∑
n=1

(η1

2
(αn−1,m + αn,m) +

η2

2
(γn,m + γn−1,m)

)

which can be expressed as

E′ = −
M∑

m=1

η1

2
N(α0,m + αN,m) + V (0) − V (M) −

M∑
m=1

η2

2
N(γ0,m + γN,m) − Ṽ (0) + Ṽ (M)

where

V (m) =
N−1∑
n=1

n∑
k=1

βk,m −
N∑
n=2

N∑
k=n

βk,m (9)

and Ṽ (m) is defined analogously with β → δ. Using again the periodic boundary conditions,
one finds

E′ = −η1N

M∑
m=1

αN,m − η2N

M∑
m=1

γN,m (10)

which has the same form as E in (8). Therefore, the interaction has the same effect as a change
in the horizontal fugacities if one chooses η1 = hN2/N = hρ2 and η2 = hN1/N = hρ1,
where ρ1 and ρ2 are the densities of cars in the two lanes. The partition function is then

Z(N1, N2, x1, x2, t1, t2, r) = Z(N1, x1r
ρ2 , t1)Z(N2, x2r

ρ1 , t2). (11)

This exact formula looks like the result of a mean-field treatment since only the densities in
the other layer enter the expressions. One should point out that it also holds for more general
choices of the vertex weights in the layers. Then, also the weight w1 of vertex 1 has to be
renormalized with the same exponential factor.

4. Results and discussion

One can now make use of the results for the single-lane case [10]. For one lane, the flux per
site is equal to the average number of horizontal steps and given by

j (ρ, x) = 〈Nx〉
NM

= 1

2

[
1

π
arccos

(
c − 2x + cx2

1 − 2xc + x2
− 1

)
− ρ

]
(12)

where c = cos(πρ) and x < 1 has been assumed. This is the physical region since the
average speed of one car is v = x/(1 − x). As a function of ρ, the flux has a maximum at
ρ = (1/π) arccos(x), which shifts from ρ = 1

2 to ρ = 0 as x increases.
By inserting x1r

ρ2 and x2r
ρ1 into (14), one then obtains the fluxes j1 and j2 in the two-lane

case. These do not depend on the motion in the other lane, but only on the density there.
Since j increases with x, the interaction factor rρα always reduces the flux, as expected. This
reduction, however, becomes smaller as the density in the second lane decreases. For the case
of only a single car one has

j1 = j (ρ1, x1r
1/N) (13)

and this approaches the value j (ρ1, x1) without interaction for large N . In order to slow down
the traffic appreciably, one would need h ≈ N , i.e. an interaction increasing with the size, so
that r vanishes exponentially. In other words, a transition only occurs at r = 0.
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As mentioned, the situation is different for stochastic models. There j shows a sudden
decrease as soon as the corresponding quantity r (describing the reduced crossing probability
at a defect) falls below a certain finite value rc. This is connected with the appearance of a
jam at the defect. In terms of trajectories, the effect can be described as follows. Consider a
stochastic model as in [10] where a particle can move an arbitrary distance horizontally, at each
step continuing with probability p and stopping with probability q = 1 −p. At the defect, the
quantities are p′ < p and q ′ > q. A particle some steps away from the defect will typically
move to the bottleneck and then stay there for some time. Due to q ′ > q, such a trajectory
has a higher weight than any other one where it makes stops before and then crosses the defect
immediately. The same holds for another particle following it, since this has q ′ = 1 once it
has reached the site next to the first one. In this way, the jam builds as a region of vertical
trajectories to the left of the defect.

In the present model, the picture is different. There is no advantage in staying at the
blockage, the crossing factor r and the weights xkt l are the same as for paths which approach
the defect gradually. Nor is there an advantage for following particles to move next to the
preceding one. Therefore no jam builds up. One could say that the model mimics the
anticipation of disturbances by producing less densely packed trajectories. But, in shifting
rc to zero, it overestimates the effect.

It is also interesting to compare the two models at the operator level. According to [22],
the transfer matrix T of the (one-layer) five-vertex model commutes with the operator

H = −
∑
n

(σ x
n σ

x
n+1 + σy

n σ
y

n+1 + 2Hσz
n) (14)

where H = (1 + x2 − t2)/2x, and it is easy to see that the ground state of H gives the maximal
eigenvalue of T . This operator shows very clearly the free-fermion character of the model and
also its non-stochastic nature, since the necessary σ zσ z-terms (which are related to the loss
processes in the master equation) are missing.

If one uses more general vertex weights w5 and w6, the operator

H = −
∑
n

(σ−
n σ

+
n+1 + -σz

nσ
z
n+1) (15)

commutes with T , where - = (w3w4 −w5w6)/(w2w4) [18,23]. Although this contains such
terms and has the form of the time-evolution operator for fully asymmetric hopping [24, 25],
the fact that - is not equal to one still makes it different. On the other hand, this model is
interesting, because it contains, in the x–t plane, a frozen phase with density ρ = 1

2 [18, 19],
where the trajectories have the form of stairs with steps of unit length in both directions.
This corresponds to synchronized traffic with always one empty site between the cars. As
this phase gives the highest possible throughput of vehicles and persists for a wide range of
parameters x, t , it represents the analogue of the maximal current phase in stochastic hopping
models [8, 26]. In the j–ρ relation, one then finds a cusp at ρ = 1

2 . As mentioned above, this
model can also be treated in the two-way case. However, apart from half-filling, the blocking
properties will be similar to those described above.
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